Endogenous and exogenous modulators of potentials evoked by a painful cutaneous laser (LEPs).
نویسندگان
چکیده
Little is known about the specific functions of the human cortical structures receiving nociceptive input, their relationship to various dimensions of pain, and the modulation of these inputs by attention. We now review studies demonstrating the subdural potentials evoked by a cutaneous laser stimulus which produces a pure pain sensation by selective activation of cutaneous nociceptors (LEPs). These LEPs were localized over human anterior and middle cingulate (A & MCC), somatosensory (S1) and parasylvian (PS) cortices. LEP, lesion and imaging data define pain-related elements within each of these structures: insula and parietal operculum within PS, anterior and middle cingulate cortex, and possibly Brodman's areas 3a, 3b and 1 within SI. LEPs recorded over each of these areas is modulated with laser intensity and evoked pain. Attention to the painful laser produces an increase in the amplitude of LEPs over all three cortical areas and emergence of a late positive potential over ACC alone. These studies provide clear evidence of human cortical structures receiving nociceptive input and the modulation of that input by exogenous (e.g. laser intensity) and endogenous factors (e.g. directed attention).
منابع مشابه
Sensory deficits of a nerve root lesion can be objectively documented by somatosensory evoked potentials elicited by painful infrared laser stimulations: a case study.
Somatosensory evoked potentials (SEPs) in response to painful laser stimuli were measured in a patient with a unilateral sensory deficit due to radiculopathy at cervical levels C7 and C8. Laser evoked potentials (LEPs) were compared with SEPs using standard electrical stimulation of median and ulnar nerves at the wrist and mechanical stimulation of the fingertips by means of a mechanical stimul...
متن کاملData to support observation of late and ultra-late latency components of cortical laser evoked potentials
Data are provided to document the presence of late and ultra-late latency components of cortical laser evoked potentials (LEPs) following noxious laser stimulus in Stancak et al. (2015) [3]. The latency components, labeled provisionally as N4, N5, and N6, were observed in 16 healthy human participants who were asked to fully attend their painful and non-painful sensations occurring in associati...
متن کاملStatistical Modeling and Analysis of Laser-Evoked Potentials of Electrocorticogram Recordings from Awake Humans
This article is devoted to statistical modeling and analysis of electrocorticogram (ECoG) signals induced by painful cutaneous laser stimuli, which were recorded from implanted electrodes in awake humans. Specifically, with statistical tools of factor analysis and independent component analysis, the pain-induced laser-evoked potentials (LEPs) were extracted and investigated under different cont...
متن کاملNociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity.
Brief radiant laser pulses can be used to activate cutaneous Adelta and C nociceptors selectively and elicit a number of transient brain responses [laser-evoked potentials (LEPs)] in the ongoing EEG. LEPs have been used extensively in the past 30 years to gain knowledge about the cortical mechanisms underlying nociception and pain in humans, by assuming that they reflect at least neural activit...
متن کاملInteractions Between Dyspnea and the Brain Processing of Nociceptive Stimuli: Experimental Air Hunger Attenuates Laser-Evoked Brain Potentials in Humans
Dyspnea and pain share several characteristics and certain neural networks and interact with each other. Dyspnea-pain counter-irritation consists of attenuation of preexisting pain by intercurrent dyspnea and has been shown to have neurophysiological correlates in the form of inhibition of the nociceptive spinal reflex RIII and laser-evoked potentials (LEPs). Experimentally induced exertional d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta neurochirurgica. Supplement
دوره 99 شماره
صفحات -
تاریخ انتشار 2006